
德国VSEEF0.1流量计现货价格同时我们还经营:在实际应用时,对于孔板流量计如果使用不当,会造成很大的测量误差,有时可达到20%左右。在流量计的使用中,如何减少其测量误差,必须考虑流量的测量原理和结构形式,注意使用条件和测量对象的物理性质是否与所选用的流量计性能相适应。下面就其测量误差进行分析:1.流量计算方程描述流体是充满圆管的、充分发展的定常流。若流动状态真实性无法确定,如果仍按照原有的仪表常数推算流量,将与实际流量存在误差。2.天然气以甲烷为主加上乙烷和其他少量的轻烃,真实相对密度小于或等于0.75。由于被测介质实际特性的不确定因素,以及实际物性变化影响仪表正常工作等对流量测量的不确定度产生影响。3.孔板的结构设计、加工、装配、安装、检验和使用必须符合标准规定的全部技术要求。由于各个装置自身及环境条件因素引起的不确定因素。3.1.孔板安装不正确 管道水平安装,如果孔板开孔中心与管道中心线不同心;如果在安装过程中存在引压管堵塞及垫片等凸出物,则会造成孔板前后压差测量不准确,从而造成测量误差。3.2.孔板入口边缘被磨损 在使用中,由于流体的磨蚀作用,使孔板的入口边缘变钝,被磨成圆形入口边缘。结果是在相同的流量下,孔口收缩系数变大,造成差压发生变化,造成测量误差。3.3.孔板表面的结垢 长期使用时,孔板流量计表面结垢,使孔板的流通面积变小,从而造成差压增大,使流量计测量值大于实际值,影响计量精度。4.差压变送器零点漂移和量程设置不当 由于时间较长,变送器的零点会发生漂移,这时差压变送器的输人和输出信号发生变化。若不及时调整,会造成实测流量值偏低或偏高。 电磁流量计供电电压问题是最主要的问题,也是此次仪表更换的最大困难。电磁流量计A是DC24V供电回路,两线制;电磁流量计B是AC220V供电,四线制。将B表安装在现场就意味现场要接一条AC220V的供电线,电缆设计之初肯定留有一定的余量(参照SH30822019石油化工仪表供电设计规范余量要求)。但是AC220V供电设备在现场并不是很多,想找到一根备用的AC220V电源线或许不是那么容易。 经现场核实电磁流量计A的安装位置附近并没有AC220V供电设备,距离太远的设备如果现场重新配管施工AC220V电缆线路,因涉及动火作业或者挖掘作业,在投用装置里面有很大的风险,而且工期太久。所以AC220V电源通过备用电缆的想法走不通。进一步现场核查发现,电磁流量计A非直拉电缆,中间有接线箱,接线箱内有多部仪表通过一根16P本安电缆接至中控室,该16P本安电缆有6P备用线,其余10P电缆所接仪表为电磁流量计A和3台液位开关、6台阀位回讯。现考虑通过这根16P的电缆中的1P走AC220V电源。接线箱到仪表端重新敷设一根临时电源线约15m,16P电缆到现场机柜间,将AC220V的1P备用线从端子柜通过一对端子排重新引出,加接电源线接至电源柜。该方案可行性分析如下: 1)16P本安电缆中液位开关信号、阀位回讯信号都是通断的开关信号,抗干扰能力强。电磁流量计B最大功率为75W,电流不大,且AC220V的电压波形好,比较稳定,对DC24V负载造成串扰的影响考虑可以接受。 2)AC220V电源信号走原本安电缆路径.是不符合规范的。综合客观实际要求,只能最大限度地满足规范又要考虑现实情况。根据HG-T20512-2014仪表配管配线设计规范中7.1.3(见表3)和7.1.5(见表4)要求,可以知道仪表信号电缆与电力电缆平行敷设最小间距都是50mm。此处是该次故障处理没办法克服只能容缺的地方。 3)机柜间电缆布线,因是在投用盘柜施工,同一柜子仪表在线的同时进行布线接线,施工安全尤为重要。考虑采取充足准备,提前加工,尽量减少盘柜内动作,由有经验的接线员接线,禁止携带对讲机进入机柜间等措施。确保机柜间电缆布线接线安全。 综合分析,该方案的可行性可以接受。根据以上的介绍,我们在设计选型或更新改造时, 要结合流量计特性和介质的情况进行合理选择,充分发挥各种流量计的优点,扬长避短,同时应考虑投资成本.下面根据天然气净化厂各种介质的特点和目前使用流量计的实际情况提出流量计选型的基本原则.1.天然气的测量 天然气是净化厂的生产对象,进厂的原料和出厂的产品都是天然气,由于进厂的原料天然气(湿天然气)含有少量的固,液体杂质,H2S和CO2含量较高,有一定腐蚀性,流量计可选择带阀式孔板节流装置的孔板流量计,以便定期清洗更换孔板, 防止孔板的锈蚀和入口边缘磨损,提高计量准确度;出厂天然气比较干净可选择带阀式孔板节流装置的流量计或气体超声流量计,气体超声流量计适用于大管径流量测量,准确度可优于1.0%,但一次性投资较高;对于工厂用天然气,由于管径较小,除孔板流量计外,也可选择旋进旋涡流量计,涡轮流量计等,选用涡轮流量计时应在上游安装过滤器.2.酸性气的流量测量 净化厂的酸性气是含有很高浓度的H2S和CO2的气体,这是净化厂从原料天然气中处理出来的主要物质,该气体的特点是压力低,带有一定水汽,腐蚀性强;因此测量酸性气流量的流量计可选用孔板流量计,均速管流量计,楔形流量计或弯管流量计,目前使用的有孔板流量计和均速管流量计,从流量计结构上讲,选择楔形流量计比较合适,它不存在积液问题,维护量也很小.3.蒸汽流量测量 过去普遍使用孔板流量计,由于孔板流量计在高温下孔板易变形,因此,可选择涡街流量计,均速管流量计,楔形流量计或质量流量计,但应考虑温度压力修正.4.化学溶液流量测量 天然气净化厂用于工业生产的化学溶液品种不是很多,对于脱硫和脱水的化学溶液由于是反复循环使用,溶液中含有部分悬浮物,过去大多数使用孔板流量计是不太合适的, 应选择楔形流量计或弯管流量计;也可选用外夹式超声流量计;盐酸和氢氧化钠流量测量应选择带防腐内衬的电磁流量计.5V液体硫磺流量测量 液体硫磺是天然气净化厂的副产品,过去由于流量计产品的局限性,很多净化厂均没有安装流量计,部分厂安装了涡轮流量计,但使用效果不佳;目前可供选择的有质量流量计和楔形流量计.由于液体硫磺一般管压力都不太高, 因此选用质量流量计较为合适.6.工业循环水流量测量 由于水的测量相对容易一些,因此可供选择的流量计比较多,如孔板流量计,涡街流量计,均速管流量计,电磁流量计,超声流量计都可用于工业水测量;若测量管口径较大,选择超声流量计比较理想,对于较小口径的选用电磁流量计效果比较好.7.污水流量测量 污水流量测量选择电磁流量计,楔形流量计比较合适,水质较好也可选用孔板流量计. 气体涡轮流量计是速度式流量计量仪表的一种,其传统结构(图1)主要由壳体、叶轮支架、轴承支架、叶轮轴、轴承叶轮、导流整流器、计数装置组成。当被检测气体经过气体涡轮流量计时,气体在导流整流器中被整流和加速,然后推动叶轮进行旋转,叶轮转动的速度和进过流量计的流体流速成正比,通过一系列的减速,最后由计数装置对叶轮转动的圈数进行累加,达到流量计计量的目的。 但是通过多年的实践发现,仪表的精度除了受零部件加工精度的影响以外,和轴承选用也有很大的关系,仪表要想保持长时间的稳定运行,轴承必须有足够的使用寿命,但是,对于进行维修和维护的仪表进行故障统计分析,大多是由于轴承的失效造成了仪表的损坏,对其进行受力分析(图2)表明,传统型的流量计结构在轴承的设计方面是一个薄弱环节。 叶轮受到气流的冲击,气流对叶轮除了产生驱动叶轮旋转的推力外,还会产生一个垂直于叶轮的推力F推力,为了维持平衡,固定轴承会受到一个由轴承支架提供的反作用力F反推力。固定轴承为了支撑叶轮及轴系本身的重力会受到-个压力N反推力,浮动轴承由于阻止叶轮以固定轴承为支点进行旋转会得到一个压力T",因此,固定轴承处在一个最恶劣的工作环境之下,经过长时间的运转,在缺少润滑的情况下,固定轴承的使用寿命大打折扣。特别是在高速运转情况下,垂直于叶轮的推力F推力也会随着转速的提高而提高,固定轴承的使用状况随之更加恶化。事实也正是如此,在维修的气体涡轮流量计中,离叶轮较近的固定轴承损坏几乎占到了100%,轴承最后只剩下了内圈外圈,叶轮也因此波及,仪表不得不进行关键部件的更换,及时发现故障并进行排除还好,如果没有及时发现,造成经济上的损失我们将无法弥补。为了改善固定轴承的使用环境,轴承所承受的支撑力我们无法改变,但是,我们可以想办法改善固定轴承所受到的反作用力F反推力,因此,引入了气体推力轴承的设计。

德国VSEEF0.1流量计现货价格由于超声波流量计传感器的安装位置,被测管路的状态对测量精度有很大影响,因此请选择满足下列条件的场所。1.管道圆度好,内表面光滑,管壁均匀。2.上游侧5D,下游侧3D以上的直管段,注“D为管道内径”。3.被测管路必须充满液体。4.必须有足够的空间易于传感器的安装与操作。5.在水平的被测管路,传感器不应装在管道的顶部和底部,并避开管道凹凸不平及有焊缝处。超声波流量计传感器的安装1.在已定的安装位置周围比传感器约大一倍的面积上,将管壁上的油漆、铁锈、污垢等清除干净,擦净露出金属应无凹凸不平。2.将紧固件安装在管道上,用不锈钢带将其固定在管道上,不应松动。3.铺设好电缆由电缆接入孔接到接线盒中的接线端子上。4.每个传感器换能器正面,涂上一厚层耦合剂(黄油)后,将传感器换能器面与管壁接触,放置在紧固组件中,并用压紧盖板将传感器压紧,耦合剂应从传感器四周的缝隙中挤出,形成一道密封条。紧固螺铨钮紧,注意四个螺铨用力要均匀,不要使传感器偏移。涡街流量计安装方式的选择 涡街流量计既可安装在水平管道上,也可安装在垂直管道上。 因为涡街流量计是一种速度式流量计,要实现准确测量,必须注意保证满管测量,故在水平管道上安装涡街流量计,一般应选择安装在管道的最低处,安装在垂直管道时,流体的流向应自下而上。 涡街流量计直管段要求 涡街流量计的安装对其前后直管段的要求是非常苛刻的,流量计上游要保证有10D~35D 的直管段(D为管道直径),流量计下游直管段应不小于5D,上游直管段长短视上游有无直角弯、扩大管、缩径管而定。 特别注意,在直管段满足要求的情况下,流量计应尽量选择安装在前后直管段尽量大的管道位置处,这样能够保证流量计上下游节流件所造成的紊流不致影响到流量计测量精度。涡街流量计安装位置的选择1)管道的强烈震动会对涡街流量计的测量产生一定的影响,故在选择涡街流量计安装位置时,应尽量避免安装在有强烈震动的管道上,以免影响测量精度.当管道有震动时,必须采取减震措施。2)工频干扰信号存在也会对涡街流量计的测量产生非常大的影响,工频信号会叠加到测量信号中去。故涡街流量计尽量避免安装在大功率电动机等存在的环境里,在此环境下,必须采取做好仪表接地,选用屏蔽电缆,信号的传输方式采用直流信号等措施消除工频干扰。3)涡街流量计漩涡发生体的迎流面必须正对着流体流动方向,安装时应特别注意,否则会产生非常大的偏差。4)在涡街流量计带有流量调节的系统中,涡街流量计即使满足直管段要求,也必须安装在调节阀前。否则调节阀产生的射流会对涡街流量计的测量产生影响,会出现阀门开小,流量反而增大的现象。金属转子流量计适用于小流量、低雷诺数的介质流量测量,具备现场指示或电远传功能,远传输出为标准的4~20mA信号。可以配置限位开关,控制报警。该仪表具有结构合理,使用维护方便,压力损失小。 转子流量计是一种采用改变流量面积原理的流量计。当管道内流体在流动中遇到流体时,流体在堵塞前后会形成压差,压差的大小与堵塞流体时的流动面积和流速有关,利用这种压差促使活动块体材料随流量变化,改变流动面积,使堵塞前后的压差保持不变,当堵塞材料的位置与流量有关时,由此可以获取到流速,然后得到流量值。金属转子流量计的优点:1、全金属结构设计,坚固可靠,耐高温、高压、耐腐蚀、使用寿命长。2、行程短,总高250毫米,安装方便,维修小。 3、机械指针表示瞬时流动,液晶显示瞬时、累积流动,还可输出脉冲、输出报警。4、金属转子流量计可用于测量小直径、低流量。 5、具有数据恢复、数据备份、功耗保护和误差自诊断等功能。6、可使用易燃和易爆的危险情况。7、垂直、水平、上下、自下而上、侧出及其他安装形式、法兰或螺纹连接。8、有多种形式,有现场型、长距离型、夹套型、防爆型、防腐型等,适用于不同场合。 金属转子流量计有就地显示型和智能远传型,带有指针显示瞬间/累积流量液晶显示,上、下限报警输出,累积脉冲输出,批次控制,标准的二线制4-20mA电流输出等多种形式,为用户使用提供了非常广阔的选择空间.德国VSEEF0.1流量计现货价格 气体涡轮流量计是速度式流量计量仪表的一种,其传统结构(图1)主要由壳体、叶轮支架、轴承支架、叶轮轴、轴承叶轮、导流整流器、计数装置组成。当被检测气体经过气体涡轮流量计时,气体在导流整流器中被整流和加速,然后推动叶轮进行旋转,叶轮转动的速度和进过流量计的流体流速成正比,通过一系列的减速,最后由计数装置对叶轮转动的圈数进行累加,达到流量计计量的目的。 但是通过多年的实践发现,仪表的精度除了受零部件加工精度的影响以外,和轴承选用也有很大的关系,仪表要想保持长时间的稳定运行,轴承必须有足够的使用寿命,但是,对于进行维修和维护的仪表进行故障统计分析,大多是由于轴承的失效造成了仪表的损坏,对其进行受力分析(图2)表明,传统型的流量计结构在轴承的设计方面是一个薄弱环节。 叶轮受到气流的冲击,气流对叶轮除了产生驱动叶轮旋转的推力外,还会产生一个垂直于叶轮的推力F推力,为了维持平衡,固定轴承会受到一个由轴承支架提供的反作用力F反推力。固定轴承为了支撑叶轮及轴系本身的重力会受到-个压力N反推力,浮动轴承由于阻止叶轮以固定轴承为支点进行旋转会得到一个压力T",因此,固定轴承处在一个最恶劣的工作环境之下,经过长时间的运转,在缺少润滑的情况下,固定轴承的使用寿命大打折扣。特别是在高速运转情况下,垂直于叶轮的推力F推力也会随着转速的提高而提高,固定轴承的使用状况随之更加恶化。事实也正是如此,在维修的气体涡轮流量计中,离叶轮较近的固定轴承损坏几乎占到了100%,轴承最后只剩下了内圈外圈,叶轮也因此波及,仪表不得不进行关键部件的更换,及时发现故障并进行排除还好,如果没有及时发现,造成经济上的损失我们将无法弥补。为了改善固定轴承的使用环境,轴承所承受的支撑力我们无法改变,但是,我们可以想办法改善固定轴承所受到的反作用力F反推力,因此,引入了气体推力轴承的设计。涡街流量计利用伴随漩涡分离的物理效应,可以采用热敏、力敏元件或通过光、声调制方法等来检测漩涡分离频率.至今用于检测分离频率的方法和采用的元件是多种多样的,归纳起来有以下几种典型方法:(1)热敏元件检测方法漩涡分离产生的交变环流所引起的整体表面速度脉动或者交变横向流的频率,用加热的金属丝、热敏电阻器等进行检测.(2)力敏元件检测方法漩涡分离造成的交变差压、交变升力或者交变升力引起的机械振动,用差动电容、电阻应变片、压电晶体、压电陶瓷等检测.(3)电磁传感器检测方法漩涡的分离所引起的膜片或者梭球等的往复振动的频率,用电磁传感器检测.(4)声、光信号调制检测方法利用声束光束通过涡街时受到漩涡的调制,由接收声强光强或相位的脉动频率得到漩涡分离频率. 由于涡街流量计是利用流体自身的规则振荡来计量流量的,因而对流体的速度分向及流动噪声,比较敏感,因此在应用过程中对管道安装状况要求较高.对L游不同形式的阻力件必须配置足够长的满足不同要求的直管段,以保证仪:菱的测量精度.表l给出了不同形式阻力件祸街流量计上游最短直管段. 在实际应用过程中,由于场地限制,有时不能提供足够长的直管段,为保证涡街流量计的准确测量,缩短直管段长度,可在上游阻力件和仪表之间装设整流器,使得不利于测量的流动状态进行整理、疏导消除流场的畸变和附加漩.在应用中要求涡街流量计与管道法兰连接使用的密封垫圈,不能突出管道内,以免造成测量误差.压电晶体的灵敏度高、体积小、线性范围大、结构简单、可靠性好、寿命长.因此,我们研究的智能涡街流量计系统采用力敏元件(压电晶体)来检测漩涡的频率. 由于孔板流量计有多个测量单元,影响其测量准确度的因素很多(如孔板的加工误差,安装误差、计量软件的计算误差等)。此外,在现有工况条件下,由于介质中的杂质对孔板有一定的冲击腐蚀作用,易造成差压变送器产生零点漂移,特别是当天然气处理效果不理想时,对计量的影响更大。因此,节流装置和差压变送器的使用维护是一个重点。应在下面的实际运行中加以注意:(1)当天然气处理效果不理想时,在孔板上游端面会沉积脏物。不仅会降低孔板的使用寿命,还会造成较大的计量偏差。(2)变送器导压管的作用是将孔板前后的压力信号引入差压,测量出差压值参.与流量计算,上下游导压管带液会使差压偏小(大),造成流量偏小(大)。在冬季,导压管冻堵现象较常见,如果流量值出现大的起伏,很可能是导压管带液或冻堵了。(3)孔板胶圈变形。由于孔板胶圈在清油的浸泡下容易变形(这种情况在夏季尤为突出),因此在.天然气处理装置停运的情况下,要注意检查胶圈变形的情况,-旦孔,板松动应立即更换,不然不仅会因胶圈泄漏造成较大的计量误差,还会出现孔板脱落难以取出.必须停产维修的局面。(4)当天然气处理不干净时,其中的粉尘、水化物等对孔板有很强的冲刷腐蚀作用,会在孔板表面形成麻点,使直角边变钝,因此,孔板应经常检查更换,否则准确度会降低。(5)差压变送器零点漂移除了与仪表本身的稳定性有关外,,导压.管带液也会造成很大的影响。由于孔板流量计的流量和差压值成开方关系,差压变送器的零点出现正负漂移会直接造成积算流量偏大或偏小。(6)流量计算机中一些关键参数输入不正确或更新不及时。比.如,孔板开孔直径是以平方的形式出现的,由于孔板开孔直径会随季节和运行时间发生变化,一-定要定期测量孔板的开孔直径,并在流量计算机中及时更新。 天然气组分变化不仅影响相对密度,还影响超压缩系数。对于没有在线色谱仪的计量系统,,在组分变化不大的情况下流量计算机中一般每周输入-周天然气组分的平均值,但在天然气组分变化很大的情况下,每天都要对天然气组分进行化验.更新。2提高天然气计量准确度的应对措施(1)定期清洗检查孔板。比如孔板流量计光洁度直角边锐利度、胶圈变形情况、孔板开孔直径等。在正常的生产情况下。每月清洗检查-次,在出现不正常的情况下,视情况加密检查次数。(2)对流量计前过滤器每两小时排污一次,每月清洗过滤器芯--次。(3)正确输入计量参数并及时更新.按时校验变送器零点。另外,在气量波动较大的情况下,及时调节差压变送器量程,使测量值尽量在量程的1/3-2/3之间,以保证测量准确度。在测量值超出变送器最大、最小量程范围时,要考虑更换合适孔径的孔板。当前热式气体质量流量计大部分用于测量气体,只有少量用于测量微小液体流量。热式质量流量计具有性能可靠、无可动部件、安装方便,压损小、量程比宽(可达1000:1)、灵敏度高等特点2,特别适用于大管径、低流速,非圆截面管道、现场空间狭窄处测量等特殊工况,在环境保护和过程工业的应用发展迅速,例如:污水处理过程中发生的气体,燃料电池工厂各种气体的流量测量及煤粉燃烧过程粉/气配比控制等。 与常用的孔板流量计、涡街流量计和差压式均速管、文丘里流量计相比较,热式气体质量流量计有如下特点:(1)直接测量流体的质量流量或标准状态下的体积流量,不需要进行温度压力补偿;.(2)一次元件结构简单,采用不锈钢或特种合金外壳覆盖,不怕脏污或腐蚀,不存在堵塞问题,且表面脏污极易清除。带不断流装拆装置,可实现不停气装拆,清洗维修,简便易行;(3)量程比特大,可达1000:1,可测流速范围0.1m/s~60m/s,完全覆盖-般工业废气及煤气厂输出总管中的流速范围。因而只需在总管上装一台插入式热式气体质量流量计,就可满足计量要求。大大地节省了投资,简化了系统结构,方便了管理,提高了系统工作的可靠性;(4)仪表精确度高(士1.5%FS),性能稳定(重复性士0.25%FS),几无压力损失,对管道振动不敏感。此外,热式气体质量流量计灵敏度高,尤其适合于大管径、低流速的流量测量。且在大管径中使用,其性能价格比更显优势;防爆、防护、抗腐蚀设计,又使它能适应恶劣工况,危险场合。 热式气体质量流量计作为一种插入式流量计,由.上述插入式流量计的测量公式可见该流量计同样方便适用于方形管道的气体流量测量。环保管道一般用圆形,而空调的管道很多地方为方形。孔板等很多仪表没有测量方形管道的数据,若使用插入式热式气体质量流量计,不论圆形或是方形管道均可通过计算获得,这也解决了低压方形通风管道的流量测量问题。三聚磷酸钠(俗称五钠)的生产过程中有一个中和过程,在该过程中磷酸和纯碱按一定比例混合、反应后被制成可用来进一步生产五钠的中和液。在这样一一个过程中为使产品质量得到有效控制就需要对加入中和罐的磷酸量根据分析结果进行精确的批量控制。存在的问题和解决方案 图1中流量计自1983年装置投产后就一直使用,到1997年已是残破不堪,常因其故障使装置的生产遭受影响。在这种情况下如何来解决好这个问题就很自然地纳入了我们的工作日程。我们首先想到的是想按原型号进行更新,但经市场询价后我们发现这种老式的仪表现在的售价实在太昂贵,竟达十一万多人民币一台,很不合算。经研究后,我们认为智能式电磁流量计能担此任(当时集批处理功能于一身的流量计还不多),其完善的功能和一体式结构既能够通过表头上的三个红外触摸键使将来的操作完全和老仪表一样在现场完成,也可利用这种仪表本身具有的HART通信功能和RS485接口方便地使用HART通讯器或其它智能终端实现远程操作。该方案投资仅为三万元人民币左右(不计远程终端,暂未用)。图1为控制系统图 2仪表选型和系统设计 (1)根据工艺的酸流量情况我们选用了口径为DN50的电磁流量计,针对磷酸的特殊腐蚀特性确定了聚四氟乙烯(PIFE衬里和钽电极,电源为24VDC(因电磁阀也用该电源)。 (2)调节阀延用原旧阀。 (3)增加一个直流24V2.SW的二位三通电磁阀,用来控制调节阀的气源(该气源在旧系统中直接受控于流量计)。. (4)因所选流量计本身的触点输出容量最大仅为0.1A24W故增加一-个触点容量为0.5A24V激励电压为24VDC的中间继电器(该继电器直接固定在流量计自身的接线盒内)用以可靠驱动电磁阀。系统构成示意图见图2。1.涡轮流量计的通气和停气要求。通气顺序:保证流量计后端的阀门处于关闭状态;再缓慢开启流量计前端的阀门确保升压速度≤35kPa/S;最后缓慢开启流量计后端的阀门,使其从小流量下运行直至调节至需要值。整个过程保持有压启动。停气顺序:先缓慢关闭流量计后端阀门:再缓慢关闭流量计前端阀门。2.防止长时间超量运行。超流量运行会严重影响使用寿命,降低计量精度导致误差增大;(注意观察表头工祝流量百分比不宜长时间超百分百)瞬时流量:从瞬时流量的观察,结合用户当时用气情况判断是否有小火不走,大火超量程现象。仪表运行时流量范围应在20%~70%之间。如果长期低限运行或高限运行都会对计量有影响:是否是用户用气负荷或用气设备发生了改变.应及时解诀。3.注意温度、压力的数值。 根据气态方程式: 方程式中:V。为标准状态下的体积量.(m2);V为工作状态下的体积量(m³);Z为工作状态下的气体压缩系数。P=Pa+Pg为流量计压力检测点处的绝对压力(kPa):Pa为当.地大气压(kPa);P为流量计压力检测点的表压力(kPa);P为标准大气压(101.325kPa);T为标准状态下的绝对温度(293.15K):T为介质工况条件下的绝对温度(273.15+t):K,为被测介质摄氏温度(℃);F为气体压缩因子从公式可以看出,误差主要集中在压力、温度的检测精度两方面.在发现流量、温度、压力值与实际偏差较大或示值不稳定时,或与以前经验数值存在较大偏差时,要及时处理o(4)在日常维护中或抄表检查时,应查看显示仪表上是否有异常符号。如有电池符号的闪烁表示电池快没电了,应及时更换电池;如有异常报警、异常警告的符号出现要及时发现.有助于处理和发现用户的违规用气行为.(5)对于有机械读数带修正仪的进口涡轮表,除抄取标况体积值之外,同时应该及时比对基表读数与修正仪.上的工况流量是否一致,两者正常情况下应该是相差不大的。(6)工艺管道检修时应拆下流量计.然后用干净的布把两端包好,防止污物、铁霄等落人流量计将涡轮叶片损坏。.(7)为保证涡轮流量计长期正常工作.应加强仪表的运行检查.监测叶轮旋转情况,如声音异常应及时卸下检查传感器内部零件。涡轮轴承磨损严重或叶片打坏的,必须维修更换.并重新检定。(8)有润滑油或清洗液注人口的传感器,应按要求定期注入润滑油或清洗液。保证叶轮良好运行。在无润滑油情况下长期连续运行势必造成致命磨损.阻尼力增加而导致运行变慢,计量结果产生负差并且影响使用寿命;电磁流量计中通常采用两类基本的励磁波形,一种是方波,另一种是正弦波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接波。在正弦波励磁模式下,可以有效的降低流体介质对电极的极化作用,能直接测量管道产生巨大的涡流损耗和磁滞损耗,同时也给测量带来由电磁感应引起的同相和正交干扰。在方波励磁模式下,由于电极会出现极化现象,导致采集的感应电压信号不够准确。方波励磁模式中,在测量非导电液体时,相对较高的励磁频率,比如10Hz到200Hz,可以用来获得好的动态特性或者获得合理的信噪比,但是这种励磁方式有一个严重的问题,其变压器效应会引起流量计的零点漂移并影响测量精度。 为了避免以上极化现象和变压器效应,减少干扰,本文研究中采用了一种三值方波励磁方式,如图4-5所示,线圈的励磁信号有正、零和负三种值。 本文采用固态继电器和直流电源的方式产生三值方波励磁电压,其结构如图4-6所示。 在该电磁流量计励磁方案中,使用LabJackU12控制输出三值方波的模拟量电压信号,通过4个固态继电器组成的开关系统,直接作用到励磁线圈上。